Notifications
Clear all

StarNet Centering Error Calculation

6 Posts
3 Users
0 Reactions
2 Views
(@dfsawdf)
Posts: 6
Registered
Topic starter
 

Hi Guys

I tried to replicate the way StarNet inflates angular standard deviations if centering errors are set in the adjustment. I used the formulae from the Starnet help file Appendix B and all works well for HZ Slope etc. but I can't get the following
formula to work:

I = Horizontal Instrument Centering Error
T =Horizontal Target Centering Error
V =Vertical Centering Error at Instrument and at Target
d = Horizontal distance from instrument to target
s = Slope distance from instrument to target
e = Elevation difference from instrument to target

Since slope distances and zenith angles are both “sloped” observations, their total standard errors are each inflated by both horizontal and vertical centering errors.

[tex]Total Zenith StdErr = Sqrt( ZenithStdErr^2 + (e/s)^2 * (I^2 + T^2) + 2*(d/s)^2 * V^2 ) [/tex]

I think the part of the formula where the distance dependent inflation of the angle standard deviation happens is missing. I get a constant ZenithStdErr if I have a constant zenith angle and decreasing slope distance.
Any ideas what is happening here?

Thank You!

PS:
My StarNet results are
I=0.000m
T=0.000m
V=0.005m
ZenithStdErr=6"

SlopeDist____Zenith____StdErr

100.0000___90-00-00.00____15.77
97.5000____89-00-00.00____16.12
95.0000____88-00-00.00____16.47
92.5000____87-00-00.00____16.85
90.0000____86-00-00.00____17.24
87.5000____85-00-00.00____17.66
85.0000____84-00-00.00____18.09
82.5000____83-00-00.00____18.54
80.0000____82-00-00.00____19.02
77.5000____81-00-00.00____19.53
75.0000____80-00-00.00____20.07
72.5000____79-00-00.00____20.64
70.0000____78-00-00.00____21.25
67.5000____77-00-00.00____21.89
65.0000____76-00-00.00____22.58
62.5000____75-00-00.00____23.33
60.0000____74-00-00.00____24.12
57.5000____73-00-00.00____24.99
55.0000____72-00-00.00____25.92
52.5000____71-00-00.00____26.94
50.0000____70-00-00.00____28.06
47.5000____80-00-00.00____30.83
45.0000____80-00-00.00____32.48
42.5000____80-00-00.00____34.33
40.0000____80-00-00.00____36.41
37.5000____80-00-00.00____38.77
35.0000____80-00-00.00____41.48
32.5000____80-00-00.00____44.60
30.0000____80-00-00.00____48.25
27.5000____80-00-00.00____52.57
25.0000____80-00-00.00____57.77
22.5000____80-00-00.00____64.12
20.0000____80-00-00.00____72.07
17.5000____80-00-00.00____82.30
15.0000____80-00-00.00____95.94
12.5000____80-00-00.00___115.06
10.0000____80-00-00.00___143.76

 
Posted : July 13, 2013 4:38 pm
(@kent-mcmillan)
Posts: 11419
 

> I think the part of the formula where the distance dependent inflation of the angle standard deviation happens is missing. I get a constant ZenithStdErr if I have a constant zenith angle and decreasing slope distance.
> Any ideas what is happening here?

Basically, you just reduce the vertical centering error to an equivalent standard error of the zenith angle and add that root-sum-of-squares to the instrumental component of the standard error of the zenith angle.

 
Posted : July 13, 2013 7:26 pm
(@dfsawdf)
Posts: 6
Registered
Topic starter
 

Kent

I tried this before and got the following results:

ZenithStdErr=6"
Hor. Centering Errors=0.000m
Vert. Centering error=0.005m

SlopeDist(m)___Zenith°___STDErr "_____STDErr Starnet "
100____________90__________12______________16
95_____________89__________12______________16
90_____________88__________13______________17
85_____________87__________14______________18
80_____________86__________14______________19
75_____________85__________15______________20
70_____________84__________16______________22
65_____________83__________17______________23
60_____________82__________18______________25
58_____________81__________19______________26
56_____________80__________19______________26
54_____________79__________20______________27
52_____________78__________21______________28
50_____________77__________21______________29
48_____________76__________22______________30
46_____________75__________23______________31
44_____________74__________24______________32
42_____________73__________25______________34
40_____________72__________26______________35
38_____________71__________28______________37
36_____________70__________29______________39
34_____________80__________31______________43
32_____________80__________33______________45
30_____________80__________35______________48
28_____________80__________37______________52
26_____________80__________40______________56
24_____________80__________43______________60
22_____________80__________47______________66
20_____________80__________52______________72
18_____________80__________58______________80
16_____________80__________65______________90
14_____________80__________74______________103
12_____________80__________86______________120
10_____________80__________103_____________144

This difference is way too big for short distances, no idea how StarNet calculates these values.

 
Posted : July 13, 2013 11:12 pm
(@kent-mcmillan)
Posts: 11419
 

> I tried this before and got the following results:

> ZenithStdErr=6"
> Hor. Centering Errors=0.000m
> Vert. Centering error=0.005m
>
> SlopeDist(m)___Zenith°___STDErr "_____STDErr Starnet "
> 100____________90__________12______________16

Okay so over 100m at Z=90deg an instrumental uncertainty of 0-00-06 in the zenith angle gives an uncertainty (s.e.) of +/-0.0029m in the height difference. A vertical centering uncertainty (s.e.) of +/-0.005m over 100m is equivalent to an uncertainty of +/-0-00-10 in the height difference.

Taking just the height differences, SQRT(0.0029^2 + 0.005^2)= 0.0058m

arcsin (0.0058/100) = 0-00-12, which checks the value you posted.

But Star*Net is applying the same +/-0.005m uncertainty to both the instrument height and the target height, so the net uncertainty would be, SQRT (0.005^2 + 0.005^2 _ 0.0029^2) = 0.0076m

arcsin (0.0076/100) = 0-00-16, which checks the Star*Net value you posted.

 
Posted : July 13, 2013 11:53 pm
(@dfsawdf)
Posts: 6
Registered
Topic starter
 

Thank You so much Kent!

When I saw your calculation I realised that I used the centering errors in metres
in the StarNet formula instead of centering error(m) divided by slope distance(m).

I should have spent some time thinking the whole thing through instead of just
staring at my Excel results and not seeing what went wrong.

 
Posted : July 14, 2013 4:54 pm
(@hamdy)
Posts: 1
Registered
 

Dear all,
Is there any error in this formula?
Total Zenith StdErr = Sqrt(ZenithStdErr2 + (e/s)2 * (I2 + T2) + 2*(d/s)2 * V2)
because the result of this equation doesn't make any sense.
Thank you all.

 
Posted : April 4, 2023 1:02 am